W=

WURTH ELEKTRONIK

ANROO3 PROTEUS-I

LOW POWER APPLICATION WITH PERIODIC WAKE-UP

VERSION 2.3

OCTOBER 21, 2019

Revision history

Man_ual o : Notes Date
version | version
1.0 2.1 * Initial version February 2017
2.0 2.1 * New corporate design June 2018
» Updated product name from AMB2621 to
2.1 2.1 November 2018

Proteus-I

Updated file name to new AppNote name
292 21 structure. Updated important notes, legal notice | June 2019
& license terms chapters.

Updated address of Division Wireless

Connectivity & Sensors location in Trier October 2019

2.3 2.1

ANROO0S3 Proteus-| version 2.3 © October2019
www.we-online.com/wireless-connectivity 1

http://www.we-online.com/wireless-connectivity

Contents

1 Introduction 3
2 Realization 4
2.1 Prerequisites 4
2.2 Implementation 4
3 Test results 7
3.1 Power consumptionnotes L ... 7
4 Appendix 8
5 Important notes 17
5.1 General customer responsibility o o oL 17
5.2 Customer responsibility related to specific, in particular safety-relevant ap-
plications 17
53 Bestcareandattention L L. 17
5.4 Customer support for product specifications 17
55 Productimprovements 18
5.6 Productlifecycle 18
5.7 Propertyrights 18
5.8 Generalterms and conditions L .. 18
6 Legal notice 19
6.1 Exclusionof liability 19
6.2 Suitability in customer applicationso o oL 19
6.3 Trademarks 19
6.4 Usagerestriction 19
7 License terms 21
71 Limited license 21
7.2 Usageandobligations 21
7.3 Ownership. e 22
7.4 Firmwareupdate(s)o 22
7.5 Disclaimerofwarranty 22
7.6 Limitationof liability 23
7.7 Applicable law and jurisdiction Lo 23
7.8 Severabilityclause 23
7.9 Miscellaneous L 23
ANROO0S3 Proteus-| version 2.3 © October2019

www.we-online.com/wireless-connectivity 2

http://www.we-online.com/wireless-connectivity

1 Introduction

The Proteus-I is a Bluetooth® module based on Nordic Semiconductors nRF52832 SoC that
brings various BLE and low power features.

The SoC has a system-off mode (deep-sleep) that allows to preserve power when the mod-
ule is sleeping. Leaving this mode can be triggered by pin interrupt, low power comparator
or NFC (NFC pins can be accessed on the Proteus-I-EV).

However, in many applications a periodic wake-up from a sleep mode is needed. Therefore
the chip offers a system-on mode that wakes on any selected event.

In this application note the realization and test results of a periodic wake-up using the real
time clock (RTC) is presented. The tested implementation sets the module to sleep and
wakes it periodically.

While awake, the module advertises and waits for incoming connections. Therefore the
Nordic "UART Example for peripheral devices" is taken and updated in a few steps such that
the periodic wake-up and the low power capabilities of the chip can be demonstrated using
messages on the UART.

The test results in chapter 3 show that we can periodically switch between sleep and normal
mode. When sleeping it consumes less than 2pA with RTC enabled.

ANROO03 Proteus-I version 2.3 © October2019
www.we-online.com/wireless-connectivity 3

http://www.we-online.com/wireless-connectivity

2 Realization

2.1 Prerequisites

» The evaluation board Proteus-I-EV and a Segger flash adapter

» Software provided by Nordic Semiconductor: The BLE stack Softdevice S132 V3.0.0,
the software development kit SDK nRF5 V 12.1.0 and the example code "Nordic UART
Example for peripheral devices" (ble_app_uart_pca10040_s132)

+ Keil pVision installed on your PC (the example base upon version 5.20.0.0)

2.2 Implementation

The goal is to update the Nordic "UART example" such that the module goes to sleep (sys-
tem on) mode if no connection request was received during advertising for a predefined time.
After a sleep period, the module is supposed to wake up after a predefined time and start
advertising again to be ready for incoming connections. To realize the automatic wake-up a
timer will be implemented that uses the real time clock (RTC) and the internal low frequency
oscillator (so no external 32768 Hz watch crystal is needed).

Due to copyright rules of the Nordic SDK we are not allowed to supply you with
a zip file containing all needed files for this demonstration. Please install the
SDK from Nordic and add or patch the corresponding files and project settings.

To do so, please perform the following steps:

ANROO0S3 Proteus-| version 2.3 © October2019
www.we-online.com/wireless-connectivity 4

http://www.we-online.com/wireless-connectivity

1. Load the Nordic "UART example for peripherals" from the Nordic SDK nRF5 V 12.1.0
and check whether it compiles without errors.

2. Update the board file, such that the code can run on the Proteus-I-EV platform:

a) You find these changes in the Appendix (Boards.h and AMB2621.h). You need to
create and add AMB2621.h and patch the project settings and some files of the
SDK'’s demo project. Following up the needed changes (already contained in the
files of the appendix)

b) Update the pin numbers according to the Proteus-I design.
c) Setthe RTS and CTS UART pins to 0, since they are not used in this example.

d) Invert the LEDs. Each LED takes about 3mA, when lighted. Thus we prefer to
flash them only for a short time.

e) Use the internal RC-oscillator as low frequency clock.

#define NRF_CLOCK_LFCLKSRC {\
.source = NRF_CLOCK LF _SRC RC,\
.rc_ctiv = 16,\

.rc_temp_ctiv= 2\

}

3. Compile the updated code and check for errors.

4. Flash the BLE stack S132 V3.0.0 and the compiled code onto the module. Check if
the Nordic UART example still does its job. If so, you have the original Nordic UART
Example ported to the Proteus-I.

In case, you haven’t loaded the Nordic Softdevice onto the chip, erase the full
chip and load the Nordic Softdevice on it.

5. Then start with the modifications to realize the above specifications. First enable the
DCDC to save current.

err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);
APP_ERROR_CHECK(err_code);

6. This needs to be done in the ble_stack_init () function.

7. Set the APP_ADV_TIMEQUT_IN_SECONDS to 5s for example. This is the timeout after
which the module goes to sleep mode, when no connection request was received
during advertising.

8. Then implement a timer:

APP_TIMER_DEF(wakeup_timer_id);

err_code = app_timer_create(&wakeup_timer_id, APP_TIMER_MODE_SINGLE_SHOT,
wakeup_timer_handler);

APP_ERROR_CHECK(err_code);

ANROO03 Proteus-I version 2.3 © October2019
www.we-online.com/wireless-connectivity 5

http://www.we-online.com/wireless-connectivity

void wakeup_timer_handler(void = p_context)

{

app_timer_stop(wakeup_timer_id);

}

9. In function on_adv_evt () change the content of the BLE_ADV_EVT_IDLE case. When
advertising timeouts, let the LED indicate idle, close the UART and start the timer.
Here we also choose 5s as sleep time. This will be the time after which the module will
wake-up again.

case BLE_ADV_EVT_IDLE:
err_code = bsp_indication_set(BSP_INDICATE_IDLE);
APP_ERROR_CHECK(err_code);
app_timer_start(wakeup_timer_id,
APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER), NULL);

app_uart_close();
break;

In this case, all peripherals are stopped and the power_manage () function in the main
loop puts the system to system on mode.

10. Then fill the wakeup_timer_handler() function. It has to re-enable the UART, re-
initialize the LEDs and restart advertising upon wake-up.

void wakeup_timer_handler(void = p_context)

{
app_timer_stop(wakeup_timer_id);
uart_init () ;
uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS,
APP_TIMER_TICKS(100, APP_TIMER_PRESCALER),
bsp_event_handler);
APP_ERROR_CHECK(err_code);
err_code = ble_advertising_start(BLE_ADV_MODE_FAST);
APP_ERROR_CHECK(err_code);

}

11. Re-compile and flash the new code onto the module.

12. Disconnect the flasher and resource the module, such that the chip runs in normal
mode.

If you do not disconnect the flasher it is possible that the nrf52 stays in debug
mode.

Also check the Jumper JP4 on the EV board that it is set.

13. Now, you can see that the module advertises for 5s and sleeps for 5s. During advertis-
ing, the LED 3 of the Proteus-I-EV flashes periodically. When the module sleeps, this
LED is off constantly.

ANROO03 Proteus-I version 2.3 © October2019
www.we-online.com/wireless-connectivity 6

http://www.we-online.com/wireless-connectivity

3 Test results

When running the new code, the Proteus-| starts advertising after power-up. In this case the
LED 3 of the Proteus-I-EV is flashing periodically and the chip needs about 1.42mA. When
no connection request was received until the advertising timeout (here 5s) was received, the
module stops advertising and disables the UART. Since no events occur after switching of
these peripherals, the core can go to sleep (system on mode). Until the core is woken up by
the timer, the module consumes less than 2uA. When the timer re-enables the UART and
starts the advertising again, the module is in normal mode with a current consumption as
before (1.42mA). This will be repeated periodically.

Operation mode with UART on

and advertising Sleep (System on) mode

Power consumption 1.42mA < 2uA

Go to sleep mode, when no
Next step connection request was
received for 5s

Wake-up from sleep after 5s
using the RTC

3.1 Power consumption notes

Please note that the power consumption during advertising time can be decreased either.
First of all, it depends on the advertising timing settings (how often an advertise packet is
sent). Furthermore, switching off the UART yields in a significant saving of power. This can
be a solution to realize a lowest power application with periodic wake-up.

ANROO0S3 Proteus-| version 2.3 © October2019
www.we-online.com/wireless-connectivity 7

http://www.we-online.com/wireless-connectivity

4 Appendix

Boards.h Add the additional case for the Proteus-I (AMB2621) board:

elif defined(BOARD_AMB2621)
#include "AMB2621.h"

And change the project settings, on tab c/c++, Section "Preprocessor Symbols -> De-
fine" of the demo project to use "BOARD_AMB2621" instead of "BOARD_PCA10040".

AMB2621.h

#tifndef AMB2621 H
#define AMB2621_H

/+ PINS of the nRF52:
« The pins are named w.r.t their function in the AMB2621 standard firmware
+/

#tdefine NRF_PIN_LED 10
#tdefine NRF_PIN_LED 2 1
#define NRF_PIN_UARTTX 2
#define NRF_PIN_UARTRX 3
#tdefine NRF_PIN_UARTRTS 4
#tdefine NRF_PIN_BOOT 5
#tdefine NRF_PIN_6 6

#define NRF_PIN 7 7

#define NRF_PIN 8 8

#define NRF_PIN_CUSTOM_9 9 /« corresponds to AMB2621_PIN_9 +/
#define NRF_PIN_OPERATIONMODE 10 /+ corresponds to AMB2621_PIN_8 +/
#tdefine NRF_PIN_11 11
#tdefine NRF_PIN_12 12
#define NRF_PIN 13 13
#tdefine NRF_PIN 14 14
#define NRF_PIN_15 15
#tdefine NRF_PIN_16 16
#tdefine NRF_PIN_17 17
#define NRF_PIN 18 18
#define NRF_PIN 19 19
#define NRF_PIN_20 20
#tdefine NRF_PIN_RESET 21
#tdefine NRF_PIN_22 22
#tdefine NRF_PIN_23 23
#define NRF_PIN 24 24
#define NRF_PIN_25 25
#define NRF_PIN_26 26
#tdefine NRF_PIN_27 27
#tdefine NRF_PIN_UARTCTS 28
#define NRF_PIN_SLEEP 29
#define NRF_PIN_30 30
#define NRF_PIN_31 31

// LEDs definitions for AMB2621

#define LEDS NUMBER 2

#define LEDS_LIST {NRF_PIN_LED_1, NRF_PIN_LED_2}
#define BSP_LED 0 NRF_PIN_LED 1

#define BSP_LED 1 NRF_PIN_LED 2

ANROO03 Proteus-I version 2.3 © October2019
www.we-online.com/wireless-connectivity 8

http://www.we-online.com/wireless-connectivity

/+ all LEDs are lit when GPIO is low +/
#define LEDS ACTIVE_STATE 1
#define LEDS _INV_MASK LEDS_MASK

// Buttons definitions for AMB2621

#tdefine BUTTONS NUMBER 1

#define BUTTONS_LIST {NRF_PIN_SLEEP}
#define BSP_BUTTON_0 NRF_PIN_SLEEP
#define BUTTON_PULL NRF_GPIO_PIN_PULLUP
#tdefine BUTTONS_ACTIVE_STATE 0

// UART definitions for AMB2621

#define RX_PIN_NUMBER NRF_PIN_UARTRX
#define TX_PIN_NUMBER NRF_PIN_UARTTX
#define RTS_PIN_NUMBER NRF_PIN_UARTRTS
#tdefine CTS_PIN_NUMBER NRF_PIN_UARTCTS

// Low frequency clock source to be used by the SoftDevice
#define NRF_CLOCK_LFCLKSRC {\

.source = NRF_CLOCK_LF_SRC_RC,\

.rc_ctiv = 16,\

.rc_temp_ctiv =2\

}
#endif / AMB2621_H

main.c

/+ Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved.

« The information contained herein is property of Nordic Semiconductor ASA.
« Terms and conditions of usage are described in detail in NORDIC
« SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.

« Licensees are granted free, non— transferable use of the information. NO
+ WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file .

*/
#define AMBER_AN_VERSION 1.0
/++ @file
: @defgroup ble_sdk_uart_over_ble_main main.c

+ @ingroup ble_sdk_app_nus_eval
« @brief UART over BLE application main file.

« This file contains the source code for a sample application that uses the Nordic UART service.
« This application uses the @ref srvlib_conn_params module.
%

#include <stdint.h>

#include <string.h>

#include "nordic_common.h"
#include "nrf.h"

#include "ble_hci.h"

#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "softdevice_handler.h"
#include "app_timer.h"
#include "app_button.h"
#include "ble_nus.h"

#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp.h"

#include "bsp_btn_ble.h"

#define IS_SRVC_CHANGED_CHARACT_PRESENT 0 /+*< Include the service _changed characteristic. If not enabled, the server’'s
database cannot be changed for the lifetime of the device.

#if (NRF_SD_BLE_API_VERSION == 3)

#define NRF_BLE_MAX_MTU_SIZE GATT_MTU_SIZE DEFAULT /+»< MTU size used in the softdevice enabling and to reply to a
BLE _GATTS_EVT_EXCHANGE_MTU_REQUEST event. +/

#endif

#define APP_FEATURE_NOT_SUPPORTED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2 /++< Reply when unsupported features are requested. +

ANROO03 Proteus-I version 2.3 © October2019
www.we-online.com/wireless-connectivity 9

http://www.we-online.com/wireless-connectivity

#define CENTRAL_LINK_COUNT 0

remember to adjust the RAM settings+/
#define PERIPHERAL_LINK_COUNT 1

number remember to adjust the RAM settings+/

#define DEVICE_NAME "Nordic_UART"
#define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN

#define APP_ADV_INTERVAL 64
ms).
#define APP_ADV_TIMEOUT_IN_SECONDS 5

#define APP_TIMER_PRESCALER 0
#define APP_TIMER_OP_QUEUE_SIZE 4

#define MIN_CONN_INTERVAL
ms units. +/

#define MAX_CONN_INTERVAL
ms units. +/

#define SLAVE_LATENCY

#define CONN_SUP_TIMEOUT
units.

MSEC_TO_UNITS(20, UNIT_1_25_MS)

MSEC_TO_UNITS(75, UNIT_1_25_MS)

0
MSEC_TO_UNITS(4000, UNIT_10_MS)

/++< Number of central links used by the application. When changing this number
/+»< Number of peripheral links used by the application. When changing this

/+*< Name of device. Will be included in the advertising data. +

/+*< UUID type for the Nordic UART Service (vendor specific). +

/+*< The advertising interval (in units of 0.625 ms. This value corresponds to 40
/++< The advertising timeout (in units of seconds). +

/++< Value of the RTC1 PRESCALER register. +
/++< Size of timer operation queues. %/

/+*< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25
/+»< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25

/+»< Slave latency.
/+*< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms

#define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER) /++< Time from initiating event (connect or start of notification)

to first time sd_ble_gap_conn_param_update is called (5 seconds). +/

#define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000, APP_TIMER_PRESCALER) /++< Time between each call to

sd_ble_gap_conn_param_update after the first call (30 seconds). +
#define MAX_CONN_PARAMS_UPDATE_COUNT 3

#define DEAD_BEEF 0xDEADBEEF
on stack unwind. %/

#define UART_TX_BUF_SIZE 256

#define UART_RX_BUF_SIZE 256

static ble_nus_t m_nus;

static uint16_t

static ble_uuid_t
APP_TIMER_DEF(wakeup_timer_id);
/=+@brief Function for assert macro callback.

*

= @details This function will be called in case of an assert in the SoftDevice.

*

/+*< Number of attempts before giving up the connection parameter negotiation. +
/+»< Value used as error code on stack dump, can be used to identify stack location
/++< UART TX buffer size. +

/+»< UART RX buffer size. +/

/+»< Structure to identify the Nordic UART Service. +/

m_conn_handle = BLE_CONN_HANDLE_INVALID; /++< Handle of the current connection. +

m_adv_uuids[] = {{BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}}; /#+< Universally unique service identifier. +/

« @warning This handler is an example only and does not fit a final product. You need to analyse

* how your product is supposed to react in case of Assert.
+ @warning On assert from the SoftDevice, the system can only recover on reset.
* @param(in] line_num Line number of the failing ASSERT call.
* @param(in] p_file_name File name of the failing ASSERT call.
o
void assert_nrf_callback(uint16_t line_num, const uint8_t « p_file_name)

{
}

app_error_handler(DEAD_BEEF, line_num, p_file_name);

/=+@brief Function for the GAP initialization .

+ @details This function will set up all the necessary GAP (Generic Access Profile) parameters of

* the device. It also sets the permissions and appearance.
%
static void gap_params_init(void)

uint32_t err_code;
ble_gap_conn_params_t gap_conn_params;
ble_gap_conn_sec_mode_t sec_mode;

BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

err_code = sd_ble_gap_device_name_set(&sec_mode,
(const uint8_t +) DEVICE_NAME,
strlen (DEVICE_NAME));
APP_ERROR_CHECK(err_code);

memset(&gap_conn_params, 0, sizeof(gap_conn_params));

gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
gap_conn_params.slave_latency = SLAVE_LATENCY;
gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;

err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
APP_ERROR_CHECK(err_code);

/++@brief Function for handling the data from the Nordic UART Service.

*

+ @details This function will process the data received from the Nordic UART BLE Service and send

* it to the UART module.
+ @param(in] p_nus Nordic UART Service structure.
+ @paramfin] p_data Data to be send to UART module.
+ @paramfin] length Length of the data.
%
/++@snippet [Handling the data received over BLE] +
static void nus_data_handler(ble_nus_t = p_nus, uint8_t « p_data, uint16_t length)

ANROO0S3 Proteus-| version 2.3
www.we-online.com/wireless-connectivity

© October2019
10

http://www.we-online.com/wireless-connectivity

for (uint32_t i =0; i <length; i++)
while (app_uart_put(p_data[i]) = NRF_SUCCESS);

while (app_uart_put(\r’) != NRF_SUCCESS);
while (app_uart_put(\n’) != NRF_SUCCESS);

}
/++@snippet [Handling the data received over BLE] +

/++@brief Function for initializing services that will be used by the application.
%
static void services_init (void)

uint32_t err_code;
ble_nus_init_t nus_init;

memset(&nus_init, 0, sizeof(nus_init)) ;
nus_init.data_handler = nus_data_handler;

err_code = ble_nus_init(&m_nus, &nus_init);
APP_ERROR_CHECK(err_code);

/++@brief Function for handling an event from the Connection Parameters Module.
= @details This function will be called for all events in the Connection Parameters Module
* which are passed to the application.

+ @note All this function does is to disconnect. This could have been done by simply setting
* the disconnect_on_fail config parameter, but instead we use the event handler
* mechanism to demonstrate its use.

« @param[in] p_evt Event received from the Connection Parameters Module.

¥

static void on_conn_params_evt(ble_conn_params_evt_t = p_evt)
uint32_t err_code;
if (p_evt—>evt_type == BLE_CONN_PARAMS_EVT_FAILED)
{

err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
APP_ERROR_CHECK(err_code);

/++@brief Function for handling errors from the Connection Parameters module.
* @param(in] nrf_error Error code containing information about what went wrong.

static void conn_params_error_handler(uint32_t nrf_error)

APP_ERROR_HANDLER(nrf_error);

/++@brief Function for initializing the Connection Parameters module.
%
static void conn_params_init(void)
{
uint32_t err_code;
ble_conn_params_init_t cp_init;

memset(&cp_init, 0, sizeof(cp_init));

cp_init.p_conn_params = NULL;

cp_init .first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY;
cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT;
cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;

cp_init .disconnect_on_fail = false;
cp_init .evt_handler = on_conn_params_evt;
cp_init .error_handler = conn_params_error_handler;

err_code = ble_conn_params_init(&cp_init);
APP_ERROR_CHECK(err_code);

/++@brief Function for putting the chip into sleep mode.
: @note This function will not return.
s;;tic void sleep_mode_enter(void)
(uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
APP_ERROR_CHECK(err_code);

// Prepare wakeup buttons.
err_code = bsp_btn_ble_sleep_mode_prepare();
APP_ERROR_CHECK(err_code);

// Go to system— off mode (this function will not return; wakeup will cause a reset).
err_code = sd_power_system_off();
APP_ERROR_CHECK(err_code);

ANROO0S3 Proteus-| version 2.3
www.we-online.com/wireless-connectivity

© October2019
11

http://www.we-online.com/wireless-connectivity

/=@brief Function for handling advertising events.

= @details This function will be called for advertising events which are passed to the application.
« @param[in] ble_adv_evt Advertising event.

static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
uint32_t err_code;

switch (ble_adv_evt)
{
case BLE_ADV_EVT_FAST:
err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
APP_ERROR_CHECK(err_code);
break;
case BLE_ADV_EVT_IDLE:
/+ switch UART off and indicate IDLE, we now go to system on mode +/
err_code = bsp_indication_set(BSP_INDICATE_IDLE);
APP_ERROR_CHECK(err_code);
app_timer_start(wakeup_timer_id, APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER), NULL);
app_uart_close();
break;
default:
break;

/++@brief Function for the application’s SoftDevice event handler.

* @param(in] p_ble_evt SoftDevice event.

static void on_ble_evt(ble_evt_t « p_ble_evt)
uint32_t err_code;
switch (p_ble_evt—>header.evt_id)

case BLE_GAP_EVT_CONNECTED:
err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
APP_ERROR_CHECK(err_code);
m_conn_handle = p_ble_evt—>evt.gap_evt.conn_handle;
break; / BLE_GAP_EVT_CONNECTED

case BLE_GAP_EVT_DISCONNECTED:
err_code = bsp_indication_set(BSP_INDICATE_IDLE);
APP_ERROR_CHECK(err_code);
m_conn_handle = BLE_ CONN_HANDLE_INVALID;
break; / BLE_ GAP_EVT_DISCONNECTED

case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
// Pairing not supported
err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
APP_ERROR_CHECK(err_code);
break; / BLE_GAP_EVT_SEC_PARAMS_REQUEST

case BLE_GATTS_EVT_SYS_ATTR_MISSING:
// No system attributes have been stored.
err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
APP_ERROR_CHECK(err_code);
break; / BLE_GATTS_EVT_SYS_ATTR_MISSING

case BLE_GATTC_EVT_TIMEOUT:
// Disconnect on GATT Client timeout event.
err_code = sd_ble_gap_disconnect(p_ble_evt—>evt.gattc_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break; / BLE_ GATTC_EVT_TIMEOUT

case BLE_GATTS_EVT_TIMEOUT:
// Disconnect on GATT Server timeout event.
err_code = sd_ble_gap_disconnect(p_ble_evt—>evt.gatts_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break; / BLE_GATTS_EVT_TIMEOUT

case BLE_EVT_USER_MEM_REQUEST:
err_code = sd_ble_user_mem_reply(p_ble_evt—>evt.gattc_evt.conn_handle, NULL);
APP_ERROR_CHECK(err_code);
break; / BLE EVT_USER _MEM_REQUEST

case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
{
ble_gatts_evt_rw_authorize_request_t req;
ble_gatts_rw_authorize_reply_params_t auth_reply;
req = p_ble_evt—>evt.gatts_evt.params.authorize_request;
if (req.type = BLE_GATTS_AUTHORIZE_TYPE_INVALID)
{
if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ) ||
(req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) ||
(req.request.write .op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL))
if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)

auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 12

http://www.we-online.com/wireless-connectivity

}
else

auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ;

auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED;
err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt—>evt.gatts_evt.conn_handle,
&auth_reply);
APP_ERROR_CHECK(err_code);
}

}
} break; / BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST

#if (NRF_SD_BLE_API_VERSION == 3)
case BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST:
err_code = sd_ble_gatts_exchange_mtu_reply(p_ble_evt—>evt.gatts_evt.conn_handle,
NRF_BLE_MAX_MTU_SIZE);
APP_ERROR_CHECK(err_code);
break; / BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST
#endif

default:
/" No implementation needed.
break;

/++@brief Function for dispatching a SoftDevice event to all modules with a SoftDevice
* event handler.
* @details This function is called from the SoftDevice event interrupt handler after a
* SoftDevice event has been received.
* @param[in] p_ble_evt SoftDevice event.
o

static void ble_evt_dispatch(ble_evt_t = p_ble_evt)

{

ble_conn_params_on_ble_evt(p_ble_evt);
ble_nus_on_ble_evt(&m_nus, p_ble_evt);
on_ble_evt(p_ble_evt);
ble_advertising_on_ble_evt(p_ble_evt);
bsp_btn_ble_on_ble_evt(p_ble_evt);

/=+@brief Function for the SoftDevice initialization .
* @details This function initializes the SoftDevice and the BLE event interrupt.
o

static void ble_stack_init (void)

uint32_t err_code;
nrf_clock_If cfg_t clock_If cfg = NRF_CLOCK_LFCLKSRC;

// Initialize ~SoftDevice.
SOFTDEVICE_HANDLER_INIT(&clock_If_cfg, NULL);

ble_enable_params_t ble_enable_params;

err_code = softdevice_enable_get_default_config(CENTRAL_LINK_COUNT,
PERIPHERAL_LINK_COUNT,
&ble_enable_params);

APP_ERROR_CHECK(err_code);

// Check the ram settings against the used number of links
CHECK_RAM_START_ADDR(CENTRAL_LINK_COUNT,PERIPHERAL_LINK_COUNT);

// Enable BLE stack.
#if (NRF_SD_BLE_API_VERSION == 3)
ble_enable_params.gatt_enable_params.att_mtu = NRF_BLE_MAX_MTU_SIZE;
#endif
err_code = softdevice_enable(&ble_enable_params);
APP_ERROR_CHECK(err_code);

// Subscribe for BLE events.
err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch);
APP_ERROR_CHECK(err_code);

/+ enable DCDC to save current +/
err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);
APP_ERROR_CHECK(err_code);

/++@brief Function for handling events from the BSP module.

+ @paramfin] event Event generated by button press.
»/
void bsp_event_handler(bsp_event_t event)

uint32_t err_code;
switch (event)

case BSP_EVENT_SLEEP:
sleep_mode_enter();
break;

case BSP_EVENT_DISCONNECT:

ANROO0S3 Proteus-| version 2.3
www.we-online.com/wireless-connectivity

© October2019
13

http://www.we-online.com/wireless-connectivity

err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
if (err_code != NRF_ERROR_INVALID_STATE)

APP_ERROR_CHECK(err_code);
}

break;

case BSP_EVENT_WHITELIST_OFF:
if (m_conn_handle == BLE_CONN_HANDLE_INVALID)

err_code = ble_advertising_restart_without_whitelist () ;
if (err_code = NRF_ERROR_INVALID_STATE)

APP_ERROR_CHECK(err_code);
}
}
break;

default:
break;

/++@brief Function for handling app_uart events.

+ @details This function will receive a single character from the app_uart module and append it to

* a string. The string will be be sent over BLE when the last character received was a
* ‘new line’ i.e ’\r\n’ (hex 0x0D) or if the string has reached a length of
* @ref NUS_MAX_DATA_LENGTH.

4
/+*@snippet [Handling the data received over UART] +
void uart_event_handle(app_uart_evt_t « p_event)
{
static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
static uint8_t index = 0;
uint32_t err_code;

switch (p_event—>evt_type)
{
case APP_UART_DATA_READY:
UNUSED_VARIABLE(app_uart_get(&data_array[index]));
index++;

if ((data_array[index — 1] =="\n’) || (index >= (BLE_NUS_MAX_DATA_LEN)))
{

err_code = ble_nus_string_send(&m_nus, data_array, index);
if (err_code = NRF_ERROR_INVALID_STATE)

APP_ERROR_CHECK(err_code);
}

index = 0;

}

break;

case APP_UART_COMMUNICATION_ERROR:
APP_ERROR_HANDLER(p_event—>data.error_communication);
break;

case APP_UART_FIFO_ERROR:
APP_ERROR_HANDLER(p_event—>data.error_code);
break;

default:
break;
}
}
/++@snippet [Handling the data received over UART] +/

/=+@brief Function for initializing the UART module.
o
/=+@snippet [UART Initialization] +
static void uart_init (void)
{
uint32_t err_code;
const app_uart_comm_params_t comm_params =

RX_PIN_NUMBER,

TX_PIN_NUMBER,

0,

0,

APP_UART_FLOW_CONTROL_DISABLED,

false ,

UART_BAUDRATE_BAUDRATE_Baud115200
b

APP_UART_FIFO_INIT(&omm_params,
UART_RX_BUF_SIZE,
UART_TX_BUF_SIZE,
uart_event_handle,
APP_IRQ_PRIORITY_LOW,
err_code);

APP_ERROR_CHECK(err_code);

}
/++@snippet [UART Initialization] +

/++@brief Function for initializing the Advertising functionality .

ANROO0S3 Proteus-| version 2.3 © October2019
www.we-online.com/wireless-connectivity 14

http://www.we-online.com/wireless-connectivity

o
static void advertising_init (void)

uint32_t err_code;
ble_advdata_t advdata;
ble_advdata_t scanrsp;

ble_adv_modes_config_t options;

// Build advertising data struct to pass into @ref ble_advertising_init .
memset(&advdata, 0, sizeof(advdata));

advdata.name_type = BLE_ADVDATA_FULL_NAME;
advdata.include_appearance = false;
advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

memset(&scanrsp, 0, sizeof(scanrsp));
scanrsp.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
scanrsp.uuids_complete.p_uuids = m_adv_uuids;

memset(&options, 0, sizeof(options));

options.ble_adv_fast_enabled = true;

options.ble_adv_fast_interval = APP_ADV_INTERVAL;
options.ble_adv_fast_timeout = APP_ADV_TIMEOUT_IN_SECONDS;

err_code = ble_advertising_init (&advdata, &scanrsp, &options, on_adv_evt, NULL);
APP_ERROR_CHECK(err_code);

/++@brief Function for initializing buttons and leds.
* @paramfout] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up.
4

static void buttons_leds_init(bool » p_erase_bonds)

bsp_event_t startup_event;

uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS,
APP_TIMER_TICKS(100, APP_TIMER_PRESCALER),
bsp_event_handler);

APP_ERROR_CHECK(err_code);

err_code = bsp_btn_ble_init(NULL, &startup_event);
APP_ERROR_CHECK(err_code);

*p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);

/=+@brief Function for placing the application in low power state while waiting for events.
4
static void power_manage(void)
{
uint32_t err_code = sd_app_evt_wait();
APP_ERROR_CHECK(err_code);
}

/=+@brief Undo the changes that we did when advertising has the timeout.
o
void wakeup_timer_handler(void « p_context)

app_timer_stop(wakeup_timer_id);

uart_init () ;

uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS,
APP_TIMER_TICKS(100, APP_TIMER_PRESCALER),
bsp_event_handler);

APP_ERROR_CHECK(err_code);

err_code = ble_advertising_start(BLE_ADV_MODE_FAST);

APP_ERROR_CHECK(err_code);
}

/++@brief Application main function.
int main(void)
{

uint32_t err_code;

bool erase_bonds;

/' Initialize .
APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER_OP_QUEUE_SIZE, false);
uart_init () ;

err_code = app_timer_create(&wakeup_timer_id, APP_TIMER_MODE_SINGLE_SHOT, wakeup_timer_handler);
APP_ERROR_CHECK(err_code);

buttons_leds_init(&erase_bonds);
ble_stack_init () ;
gap_params_init();

services_init () ;

advertising_init () ;
conn_params_init();

// printf ("\r\nUART Start/\rin");
err_code = ble_advertising_start(BLE_ADV_MODE_FAST);
APP_ERROR_CHECK(err_code);

// Enter main loop.
for ()
{

}

power_manage();

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 15

http://www.we-online.com/wireless-connectivity

« @)

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 16

http://www.we-online.com/wireless-connectivity

5 Important notes

The following conditions apply to all goods within the wireless connectivity product range of
Wirth Elektronik eiSos GmbH & Co. KG:

5.1 General customer responsibility

Some goods within the product range of Wirth Elektronik eiSos GmbH & Co. KG contain
statements regarding general suitability for certain application areas. These statements
about suitability are based on our knowledge and experience of typical requirements con-
cerning the areas, serve as general guidance and cannot be estimated as binding statements
about the suitability for a customer application. The responsibility for the applicability and use
in a particular customer design is always solely within the authority of the customer. Due to
this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide
whether the device with the specific product characteristics described in the product speci-
fication is valid and suitable for the respective customer application or not. Accordingly, the
customer is cautioned to verify that the documentation is current before placing orders.

5.2 Customer responsibility related to specific, in particular
safety-relevant applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components
or failure before the end of the usual lifetime cannot be completely eliminated in the current
state of the art, even if the products are operated within the range of the specifications. The
same statement is valid for all software sourcecode and firmware parts contained in or used
with or for products in the wireless connectivity and sensor product range of Wirth Elektronik
eiSos GmbH & Co. KG. In certain customer applications requiring a high level of safety
and especially in customer applications in which the malfunction or failure of an electronic
component could endanger human life or health, it must be ensured by most advanced
technological aid of suitable design of the customer application that no injury or damage is
caused to third parties in the event of malfunction or failure of an electronic component.

5.3 Best care and attention

Any product-specific data sheets, manuals, application notes, PCN’s, warnings and cautions
must be strictly observed in the most recent versions and matching to the products firmware
revisions. This documents can be downloaded from the product specific sections on the
wireless connectivity homepage.

5.4 Customer support for product specifications

Some products within the product range may contain substances, which are subject to re-
strictions in certain jurisdictions in order to serve specific technical requirements. Necessary
information is available on request. In this case, the field sales engineer or the internal sales
person in charge should be contacted who will be happy to support in this matter.

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 17

http://www.we-online.com/wireless-connectivity

5.5 Product improvements

Due to constant product improvement, product specifications may change from time to time.
As a standard reporting procedure of the Product Change Notification (PCN) according to
the JEDEC-Standard, we inform about major changes. In case of further queries regarding
the PCN, the field sales engineer, the internal sales person or the technical support team
in charge should be contacted. The basic responsibility of the customer as per section 5.1
and 5.2 remains unaffected. All wireless connectivity module driver software “wireless con-
nectivity SDK™ and it's source codes as well as all PC software tools are not subject to the
Product Change Notification information process.

5.6 Product life cycle

Due to technical progress and economical evaluation we also reserve the right to discontin-
ue production and delivery of products. As a standard reporting procedure of the Product
Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early
stage about inevitable product discontinuance. According to this, we cannot ensure that all
products within our product range will always be available. Therefore, it needs to be verified
with the field sales engineer or the internal sales person in charge about the current product
availability expectancy before or when the product for application design-in disposal is con-
sidered. The approach named above does not apply in the case of individual agreements
deviating from the foregoing for customer-specific products.

5.7 Property rights

All the rights for contractual products produced by Wrth Elektronik eiSos GmbH & Co. KG
on the basis of ideas, development contracts as well as models or templates that are subject
to copyright, patent or commercial protection supplied to the customer will remain with Wirth
Elektronik eiSos GmbH & Co. KG. Wirth Elektronik eiSos GmbH & Co. KG does not warrant
or represent that any license, either expressed or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right relating to any combination,
application, or process in which Wirth Elektronik eiSos GmbH & Co. KG components or
services are used.

5.8 General terms and conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current ver-
sion of the "General Terms and Conditions of Wurth Elektronik eiSos Group", last version
available at www.we-online.com.

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 18

www.we-online.com
http://www.we-online.com/wireless-connectivity

6 Legal notice

6.1 Exclusion of liability

Warth Elektronik eiSos GmbH & Co. KG considers the information in this document to be
correct at the time of publication. However, Wirth Elektronik eiSos GmbH & Co. KG re-
serves the right to modify the information such as technical specifications or functions of
its products or discontinue the production of these products or the support of one of these
products without any written announcement or notification to customers. The customer must
make sure that the information used corresponds to the latest published information. Wrth
Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products.
Wairth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for
any other of its intellectual property rights or third-party rights.

Notwithstanding anything above, Wirth Elektronik eiSos GmbH & Co. KG makes no repre-
sentations and/or warranties of any kind for the provided information related to their accuracy,
correctness, completeness, usage of the products and/or usability for customer applications.
Information published by Wirth Elektronik eiSos GmbH & Co. KG regarding third-party prod-
ucts or services does not constitute a license to use such products or services or a warranty
or endorsement thereof.

6.2 Suitability in customer applications

The customer bears the responsibility for compliance of systems or units, in which Wrth
Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations.
Customer acknowledges and agrees that it is solely responsible for compliance with all le-
gal, regulatory and safety-related requirements concerning its products, and any use of
Warth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding
any applications-related in-formation or support that may be provided by Wirth Elektronik
eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary ex-
pertise to create and implement safeguards which anticipate dangerous consequences of
failures, monitor failures and their consequences lessen the likelihood of failures that might
cause harm and take appropriate remedial actions. The customer will fully indemnify Warth
Elektronik eiSos GmbH & Co. KGand its representatives against any damages arising out
of the use of any Wirth Elektronik eiSos GmbH & Co. KG components in safety-critical
applications.

6.3 Trademarks

AMBER wireless is a registered trademark of Wirth Elektronik eiSos GmbH & Co. KG. All
other trademarks, registered trademarks, and product names are the exclusive property of
the respective owners.

6.4 Usage restriction

Warth Elektronik eiSos GmbH & Co. KG products have been designed and developed for
usage in general electronic equipment only. This product is not authorized for use in equip-
ment where a higher safety standard and reliability standard is especially required or where

ANROO03 Proteus-I version 2.3 © October2019
www.we-online.com/wireless-connectivity 19

http://www.we-online.com/wireless-connectivity

a failure of the product is reasonably expected to cause severe personal injury or death,
unless the parties have executed an agreement specifically governing such use. Moreover,
Wiirth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use
in areas such as military, aerospace, aviation, nuclear control, submarine, transportation
(automotive control, train control, ship control), transportation signal, disaster prevention,
medical, public information network etc. Wirth Elektronik eiSos GmbH & Co. KG must be
informed about the intent of such usage before the design-in stage. In addition, sufficient
reliability evaluation checks for safety must be performed on every electronic component,
which is used in electrical circuits that require high safety and reliability function or perfor-
mance. By using Wrth Elektronik eiSos GmbH & Co. KG products, the customer agrees to
these terms and conditions.

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 20

http://www.we-online.com/wireless-connectivity

7 License terms

This License Terms will take effect upon the purchase and usage of the Wirth Elektronik
eiSos GmbH & Co. KG wireless connectivity products. You hereby agree that this license
terms is applicable to the product and the incorporated software, firmware and source codes
(collectively, "Software") made available by Wirth Elektronik eiSos in any form, including but
not limited to binary, executable or source code form.

The software included in any Wirth Elektronik eiSos wireless connectivity product is pur-
chased to you on the condition that you accept the terms and conditions of this license
terms. You agree to comply with all provisions under this license terms.

7.1 Limited license

Warth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and
royalty-free license to use the software and under the conditions that will be set forth in this
license terms. You are free to use the provided Software only in connection with one of the
products from Wirth Elektronik eiSos to the extent described in this license terms. You are
entitled to change or alter the source code for the sole purpose of creating an application
embedding the Wirth Elektronik eiSos wireless connectivity product. The transfer of the
source code to third parties is allowed to the sole extent that the source code is used by
such third parties in connection with our product or another hardware provided by Wurth
Elektronik eiSos under strict adherence of this license terms. Wiirth Elektronik eiSos will not
assume any liability for the usage of the incorporated software and the source code. You
are not entitled to transfer the source code in any form to third parties without prior written
consent of Wirth Elektronik eiSos.

You are not allowed to reproduce, translate, reverse engineer, decompile, disassemble or
create derivative works of the incorporated Software and the source code in whole or in
part. No more extensive rights to use and exploit the products are granted to you.

7.2 Usage and obligations

The responsibility for the applicability and use of the Wirth Elektronik eiSos wireless con-
nectivity product with the incorporated Firmware in a particular customer design is always
solely within the authority of the customer. Due to this fact, it is up to you to evaluate and
investigate, where appropriate, and to decide whether the device with the specific product
characteristics described in the product specification is valid and suitable for your respective
application or not.

You are responsible for using the Wiirth Elektronik eiSos wireless connectivity product with
the incorporated Firmware in compliance with all applicable product liability and product
safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear
the risk for failure leading to personal injury or death due to your usage of the product.
Warth Elektronik eiSos’ products with the incorporated Firmware are not authorized for use
in safety-critical applications, or where a failure of the product is reasonably expected to
cause severe personal injury or death. Moreover, Wirth Elektronik eiSos’ products with the
incorporated Firmware are neither designed nor intended for use in areas such as military,
aerospace, aviation, nuclear control, submarine, transportation (automotive control, train
control, ship control), transportation signal, disaster prevention, medical, public information
network etc. You shall inform Wirth Elektronik eiSos about the intent of such usage before

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 21

http://www.we-online.com/wireless-connectivity

design-in stage. In certain customer applications requiring a very high level of safety and
in which the malfunction or failure of an electronic component could endanger human life or
health, you must ensure to have all necessary expertise in the safety and regulatory ramifi-
cations of your applications. You acknowledge and agree that you are solely responsible for
all legal, regulatory and safety-related requirements concerning your products and any use
of Wrth Elektronik eiSos’ products with the incorporated Firmware in such safety-critical ap-
plications, notwithstanding any applications-related information or support that may be pro-
vided by Wiirth Elektronik eiSos. YOU SHALL INDEMNIFY WURTH ELEKTRONIK EISOS
AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WURTH ELEKTRONIK EISOS’
PRODUCTS WITH THE INCORPORATED FIRMWARE IN SUCH SAFETY-CRITICAL AP-
PLICATIONS.

7.3 Ownership

The incorporated Firmware created by Wurth Elektronik eiSos is and will remain the exclu-
sive property of Wirth Elektronik eiSos.

7.4 Firmware update(s)

You have the opportunity to request the current and actual Firmware for a bought wireless
connectivity Product within the time of warranty. However, Wirth Elektronik eiSos has no
obligation to update a modules firmware in their production facilities, but can offer this as a
service on request. The upload of firmware updates falls within your responsibility, e.g. via
ACC or another software for firmware updates. Firmware updates will not be communicated
automatically. It is within your responsibility to check the current version of a firmware in the
latest version of the product manual on our website. The revision table in the product manual
provides all necessary information about firmware updates. There is no right to be provided
with binary files, so called "Firmware images", those could be flashed through JTAG, SWD,
Spi-Bi-Wire, SPI or similar interfaces.

7.5 Disclaimer of warranty

THE FIRMWARE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WURTH ELEK-
TRONIK EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND
RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES’
INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR
YOUR INTENDED PURPOSE OR USAGE. WURTH ELEKTRONIK EISOS DOES NOT
WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS
GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR
PROCESS IN WHICH THE WURTH ELEKTRONIK EISOS’ PRODUCT WITH THE INCOR-
PORATED FIRMWARE IS USED. INFORMATION PUBLISHED BY WURTH ELEKTRONIK
EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTI-
TUTE A LICENSE FROM WURTH ELEKTRONIK EISOS TO USE SUCH PRODUCTS OR
SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 22

http://www.we-online.com/wireless-connectivity

7.6 Limitation of liability

Any liability not expressly provided by Wurth Elektronik eiSos shall be disclaimed.

You agree to hold us harmless from any third-party claims related to your usage of the Wrth
Elektronik eiSos’ products with the incorporated Firmware, software and source code. Wrth
Elektronik eiSos disclaims any liability for any alteration, development created by you or your
customers as well as for any combination with other products.

7.7 Applicable law and jurisdiction

Applicable law to this license terms shall be the laws of the Federal Republic of Germany.
Any dispute, claim or controversy arising out of or relating to this license terms shall be
resolved and finally settled by the court competent for the location of Wirth Elektronik eiSos’
registered office.

7.8 Severability clause

If a provision of this license terms is or becomes invalid, unenforceable or null and void, this
shall not affect the remaining provisions of the terms. The parties shall replace any such
provisions with new valid provisions that most closely approximate the purpose of the terms.

7.9 Miscellaneous

Wirth Elektronik eiSos reserves the right at any time to change this terms at its own discre-
tion. It is your responsibility to check at Wiirth Elektronik eiSos homepage for any updates.
Your continued usage of the products will be deemed as the acceptance of the change.

We recommend you to be updated about the status of new firmware and software, which is
available on our website or in our data sheet and manual, and to implement new software in
your device where appropriate.

By ordering a wireless connectivity product, you accept this license terms in all terms.

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 23

http://www.we-online.com/wireless-connectivity

List of Figures

List of Tables

ANROO03 Proteus-I version 2.3 ©October2019
www.we-online.com/wireless-connectivity 24

http://www.we-online.com/wireless-connectivity

WE—-

WURTH ELEKTRONIK

more than you expect

i((—l—»i

% voé

Internet Monitoring Automated Meter
of Things & Control Reading

Contact:
Wirth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors

Max-Eyth-Stral3e 1
74638 Waldenburg
Germany

Tel.: +49 651 99355-0 e /
Fax.: +49 651 99355-69 R SRS -
www.we-online.com/wireless-connectivity L L) ¢

......

	Introduction
	Realization
	Prerequisites
	Implementation

	Test results
	Power consumption notes

	Appendix
	Important notes
	General customer responsibility
	Customer responsibility related to specific, in particular safety-relevant applications
	Best care and attention
	Customer support for product specifications
	Product improvements
	Product life cycle
	Property rights
	General terms and conditions

	Legal notice
	Exclusion of liability
	Suitability in customer applications
	Trademarks
	Usage restriction

	License terms
	Limited license
	Usage and obligations
	Ownership
	Firmware update(s)
	Disclaimer of warranty
	Limitation of liability
	Applicable law and jurisdiction
	Severability clause
	Miscellaneous

